380 research outputs found

    A decision support system for tomato growers based on plant responses and energy consumption

    Get PDF
    The importance of plant water status for a good production and quality of tomato fruits (Solanum lycopersicum L.) has been emphasized by many authors. Currently, different new energy-saving technologies and growing strategies are under investigation to cope with the increasing fossil fuel prices. However, these technologies and growing strategies typically alter the greenhouse climate, thereby affecting the plants' response. Hence, the question arises how to adapt the microclimate to reduce the energy consumption of greenhouse tomato cultivation without compromising fruit yield or quality. Nowadays, the use of plant-based methods to steer the climate is of high interest and it was demonstrated that monitoring of stem diameter variations and fruit growth provides crucial information on both the plant water and carbon status. However, interpretation of these data is not straightforward and, hence, mechanistic modelling is necessary for an unambiguous interpretation of the dynamic plant response. During a 4-year research period, we investigated the response of different plant processes of tomato to dynamic microclimatic greenhouse conditions. The final aim was to develop a decision support system that helps growers to find an optimal balance between energy consumption, plant response and fruit yield. To this end, an integrated plant model, including stem, leaves, roots and fruits, was developed in which the various plant processes are mechanistically described. The plant model was calibrated and extensively validated on datasets collected throughout the different growing seasons in different research facilities in Flanders. This plant model was finally integrated into an existing greenhouse climate model and validated with data from the greenhouse climate and energy consumption. After validation, this integrated model was used to run scenarios on growing strategies and their impact on energy consumption, plant photosynthesis and fruit growth

    Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health

    Get PDF
    Broad-spectrum β-lactamase genes (coding for extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases) have been frequently demonstrated in the microbiota of food-producing animals. This may pose a human health hazard since these genes may be present in zoonotic bacteria, which would cause a direct problem. They can also be present in commensals, which may act as a reservoir of resistance genes for pathogens causing disease both in humans and animals. Broad-spectrum β-lactamase genes are frequently located on mobile genetic elements, such as plasmids, transposons and integrons, which often also carry additional resistance genes. This could limit treatment options for infections caused by broad-spectrum β-lactam-resistant microorganisms. This review addresses the growing burden of broad-spectrum β-lactam resistance among Enterobacteriaceae isolated from food, companion and wild animals worldwide. To explore the human health hazard, the diversity of broad-spectrum β-lactamases among Enterobacteriaceae derived from animals is compared with respect to their presence in human bacteria. Furthermore, the possibilities of the exchange of genes encoding broad-spectrum β-lactamases – including the exchange of the transposons and plasmids that serve as vehicles for these genes – between different ecosystems (human and animal) are discussed

    Effect of stem age on the response of stem diameter variations to plant water status in tomato

    Get PDF
    Plant water status plays a major role in glasshouse cultivation of tomato (Solanum lycopersicum L.). New climate control technologies alter the glasshouse climate and make it less dependent on solar radiation. However, irrigation strategies are still often based on solar radiation sums. In order to maintain a good plant water status, it is interesting to use plant-based methods such as monitoring sap flow (F) or stem diameter variations (SDV). Though SDV give important information about plant water status, an unambiguous interpretation might be difficult because other factors such as stem age, fruit load and sugar content of the stem also affect SDV. In this study, an analysis of the effect of stem age on the response of SDV to water status was performed by calibration of a mechanistic flow and storage model. This allowed us to determine how parameter values changed across the growing season. Tissue extensibility decreased over the growing season resulting in a lower growth rate potential, whereas daily cycles of shrinking and swelling of the stem became more pronounced towards the end of the growing season. Parameters were then adapted to time-dependent variables and implemented in the model, allowing long term simulation and interpretation of SDV. Sensitivity analysis showed that model predictions were very sensitive to initial sucrose content of the phloem tissue and the parameters related to plastic growth

    Molecular characterization of Salmonella Enteritidis : comparison of an optimized multi-locus variable-number of tandem repeat analysis (MLVA) and pulsed-field gel electrophoresis

    Get PDF
    Salmonella Enteritidis (SE) is a genetically homogenous serovar, which makes optimal subtype discrimination crucial for epidemiological research. This study describes the development and evaluation of an optimized multiple-locus variable number tandem-repeat assay (MLVA) for characterization of SE. The typeability and discriminatory power of this MLVA was determined on a selected collection of 60 SE isolates and compared with pulsed-field gel electrophoresis (PFGE) using restriction enzymes XbaI, NotI, or SfiI. In addition, the estimated Wallace coefficient (W) was calculated to assess the congruence of the typing methods. Selection of epidemiologically unrelated isolates and more related isolates (originating from layer farms) was also based on the given phage type (PT). When targeting six loci, MLVA generated 16 profiles, while PFGE produced 10, 9, and 16 pulsotypes using XbaI, NotI, and SfiI, respectively, for the entire strain collection. For the epidemiologically unrelated isolates, MLVA had the highest discriminatory power and showed good discrimination between isolates from different layer farms and among isolates from the same layer farm. MLVA performed together with PT showed higher discriminatory power compared to PFGE using one restriction enzyme together with PT. Results showed that combining PT with the optimized MLVA presented here provides a rapid typing tool with good discriminatory power for characterizing SE isolates of various origins and isolates originating from the same layer farm

    Characterization of extended-spectrum β-lactamases produced by Escherichia coli isolated from hospitalized and nonhospitalized patients : emergence of CTX-M-15-producing strains causing urinary tract infections

    Get PDF
    Extended-spectrum β-lactamase-producing Escherichia coli isolates were obtained from hospitalised and non-hospitalised patients in Belgium between August 2006 and November 2007. The antimicrobial susceptibility of these isolates was determined and their ESBL genes were characterized. Clonal relationships between the CTX-M-producing E. coli isolates causing urinary tract infections were also studied. A total of 90 hospital- and 45 community-acquired cephalosporin-resistant E. coli isolates were obtained. Tetracycline, enrofloxacine, gentamicin and trimethoprim-sulfamethaxozole resistance rates were significantly different between the community-onset and hospital-acquired isolates. A high diversity of different ESBLs was observed among the hospital-acquired E. coli isolates whereas CTX-M-15 was dominating among the community-acquired E. coli isolates (n=28). Thirtheen different PFGE profiles were observed in the community-acquired CTX-M-15-producing E. coli indicating that multiple clones have acquired the blaCTX-M-15 gene. All community-acquired CTX-M-15-producing E. coli isolates of phylogroups B2 and D were assigned to the sequence type ST131. The hospital-acquired CTX-M-15-producing E. coli isolates of phylogroups B2, B1, A and D corresponded to ST131, ST617, ST48 and ST405, respectively. In conclusion, CTX-M-type ESBLs have emerged as the predominant class of ESBLs produced by E. coli isolates in the hospital and community in Belgium. Of particular concern is the predominant presence of the CTX-M-15 enzyme in ST131 community-acquired E. coli

    Antibiotic residues and antibiotic-resistant bacteria in pig slurry used to fertilize agricultural fields

    Get PDF
    Pig manure may contain antibiotic residues, antibiotic-resistant bacteria or pathogens, which may reach the environment upon fertilization. During this study, 69 antibiotic residues belonging to 12 classes were quantified in 89 pig slurry samples. These samples were also studied for the presence of Salmonella and for E. coli resistant to meropenem, colistin, ciprofloxacin, or cefotaxim. The obtained isolates were further tested for antibacterial susceptibility. No antibiotic residues were detected in four samples, whereas in the other samples, up to 12 antibiotics were found. The most frequently detected antibiotic residues were doxycycline, sulfadiazine, and lincomycin. Doxycycline was found in the highest concentration with a mean of 1476 mu g/kg manure (range: 18-13632 mu g/kg). Tylosin and oxytetracycline were found with mean concentrations of 784 mu g/kg (range: 17-5599 mu g/kg) and 482 mu g/kg (range: 11-3865 mu g/kg), respectively. Lincomycin, had a mean concentration of 177 mu g/kg manure (range: 9-3154 mu g/kg). All other 18 antibiotic residues were found with mean concentrations of less than 100 mu g/kg manure. Fifty-one slurry samples harbored Salmonella; 35% of the Salmonella isolates were sensitive to a panel of 14 antibiotics, whereas the other 65% were resistant up to five antibiotics. For E. coli, 52 manure samples contained E. coli isolates which were resistant to ciprofloxacin and 22 resistant to cefotaxime. All ciprofloxacin and cefotaxime-resistant isolates were multi-resistant, with resistance up to nine and eight antibiotics, respectively. This research indicates that pig slurry used for fertilization often contains antibiotic residues and antibiotic-resistant bacteria, including pathogens

    Characterization of cefotaxime- and ciprofloxacin-resistant commensal Escherichia coli originating from Belgian farm animals indicates high antibiotic resistance transfer rates

    Get PDF
    Food-producing animals represent one of the sources of antibiotic resistant commensal bacteria. There is an increasing awareness that these bacteria might have the potential to transfer their resistance genes to other (pathogenic) bacteria. In this study, 50 commensal Escherichia coli strains originating from food-producing animals and resistant to the highest priority, critically important antibiotics cefotaxime and/or ciprofloxacin, were selected for further characterization. For each strain (i) an antibiogram, (ii) the phylogenetic group, (iii) plasmid replicon type, (iv) presence and identification of integrons, and (v) antibiotic resistance transfer ratios were determined. Forty-five of these strains were resistant to 5 or more antibiotics, and 6 strains were resistant to 10 or more antibiotics. Resistance was most common to ampicillin (100%), sulfamethoxazole, ciprofloxacin (82%), trimethoprim, tetracycline (74%), cefotaxime, (70%) and ceftazidime (62%). Phylogenetic groups A (62%) and B1 (26%) were most common, followed by C (8%) and E (4%). In 43 strains, more than 1 replicon type was detected, with FII (88%), FIB (70%), and I1 (48%) being the most encountered types. Forty strains, positive for integrons, all harbored a class I integron and seven of them contained an additional class II integron. No class III integrons were detected. The antibiotic resistance transfer was assessed by liquid mating experiments. The transfer ratio, expressed as the number of transconjugants per recipient, was between 10(-5) and 10(0) for cefotaxime resistance and between 10(-7) and 10(-1) for ciprofloxacin resistance. The results of the current study prove that commensal E. coli in food-production animals can be a source of multiple resistance genes and that these bacteria can easily spread their ciprofloxacin and cefotaxime resistance

    Presence and fate of antibiotic residues, antibiotic resistance genes and zoonotic bacteria during biological swine manure treatment

    Get PDF
    The presence and dissemination of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in the environment is of growing concern worldwide. Manure management practices, such as biological removal of nitrogen from swine manure, may help to decrease levels of antibiotic residues, antibiotic resistance genes and zoonotic bacteria present in manure before fertilization, thereby reducing environmental contamination. Therefore, the aim of this study was to monitor the presence and fate of seven antibiotic residues (colistin, sulfadiazine, trimethoprim, doxycycline, oxytetracycline, ceftiofur and tylosin A), nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(0), tet(Q), tet(W), erm(B), erm(F) and sul2) and two zoonotic bacteria (Salmonella Typhimurium and Campylobacter coli) during biological nitrogen removal from swine manure over time. Samples from the raw manure, the solid fraction, the liquid fraction and the storage lagoon were analyzed on two farms at six time points with an interval of two weeks. Only the antibiotics which were used during the three months preceding the first sampling could be detected before and after biological nitrogen removal from swine manure. Of all the antibiotics studied, doxycycline was recovered in all of the samples and sulfadiazine was recovered in most samples on both farms. For both antibiotics, there appears to be a reduction of the amount of residues present in the storage lagoon compared to the liquid fraction, however, this reduction was not statistically significant. A significant reduction of the relative abundances of most of the antibiotic resistance genes studied was observed when comparing the liquid fraction and the storage lagoon. For tet(L), no differences were observed between the fractions sampled and for sul2 and erm(F), a significant increase in relative abundances was observed on the second farm sampled. For the zoonotic bacteria, a reduction of at least 1 log was observed after biological nitrogen removal from swine manure. The results indicate that the concentration of certain antibiotic residues and several antibiotic resistance genes and the amount of zoonotic bacteria present in the manure may be reduced in the end product of the biological nitrogen removal from swine manure
    • …
    corecore